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The Golgi apparatus contains thousands of different types of

integral and peripheral membrane proteins, perhaps more than

any other intracellular organelle. To understand these proteins’

roles in Golgi function and in broader cellular processes, it is

useful to categorize them according to their contribution to

Golgi creation and maintenance. This is because all of the

Golgi’s functions derive from its ability to maintain steady-state

pools of particular proteins and lipids, which in turn relies on

the Golgi’s dynamic character — that is, its ongoing state of

transformation and outgrowth from the endoplasmic reticulum.

Here, we categorize the expanding list of Golgi-associated

proteins on the basis of their role in Golgi reformation after

the Golgi has been disassembled. Information gained on how

different proteins participate in this process can provide

important insights for understanding the Golgi’s global

functions within cells.
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Abbreviations
ER endoplasmic reticulum

ERGIC ER–Golgi intermediate carrier

Introduction
The Golgi apparatus performs three major functions

essential for growth, homeostasis and division of eukar-

yotic cells. First, it operates as a carbohydrate factory for

the processing and modification of proteins and lipids

moving through the secretory pathway [1]. Second, it

serves as a station for protein sorting and transport, receiv-

ing membrane from the ER and delivering it to the plasma

membrane or other intracellular sites [2]. Finally, it acts

as a membrane scaffold onto which diverse signaling,

sorting and cytoskeleton proteins adhere [3,4,5��].

These distinct Golgi functions operate within a struc-

ture that is unique among subcellular organelles in many

ways, including its composition as a stacked array of

cisternae and connecting tubules/vesicles, its enormous

diversity of protein components (>1000 different types)

[6], and its unrivaled capacity to dynamically transform

in response to specific stimuli or other cellular changes.

Examples of the Golgi’s dynamic behavior include

its reversible disassembly during mitosis and under

experimentally induced conditions (e.g. osmotic stress

or treatment with BFA, Exo1 or ilimaquinone [7–10]),

and its rebuilding at peripheral ER export sites in

response to microtubule disruption or expression of

mutated proteins that function in ER-to-Golgi traffick-

ing [11,12].

The Golgi’s ability to transform itself fundamentally

under different conditions is probably due to the fact

that proteins only associate with it transiently as they

move through other pathways in the cell. Conditions that

alter the entry or return of these proteins to the Golgi,

therefore, will disrupt Golgi structure and function. Also,

many proteins associated with the Golgi are part of large

protein complexes [13]. Altering the association of one

protein in the complex may affect the stability and

localization of others, with downstream consequences

for Golgi organization and structure.

That no class of Golgi protein is stably associated with

the Golgi has been demonstrated in GFP-based imaging

studies examining the trafficking itineraries and resi-

dency times of proteins localized in the Golgi (see

Figure 1 for a summary of these results). These studies

have shown that integral membrane proteins associated

with the Golgi, including processing enzymes (i.e. man-

nosidase II, galactosyltransferase, etc), SNAREs and

secretory cargo receptors (i.e. ERGIC53, p24 proteins

and KDEL receptors), are continuously exiting and re-

entering the Golgi by membrane trafficking pathways

leading to and from the ER [12,14,15]. Peripheral mem-

brane proteins associated with the Golgi (including the

small GTPase Arf1 and its effectors [phosphotidylinositol

kinases, lipases, signaling kinases], as well as coatomer,

p115 and GRASPs), by contrast, exchange constantly

between membrane and cytosolic pools [5��,12,16].

Newly synthesized cargo proteins passing through the

Golgi to other destinations (which include both integral

membrane and luminal proteins) also spend relatively

short periods of time in the Golgi [17,18��]. The residency

times for these different classes of Golgi proteins as

measured by photobleaching varies enormously: Golgi

processing enzymes stay for �60 min, cargo proteins

�30 min, cargo receptors �10 min and peripheral proteins

�1 min [12,16].
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Why are proteins only transiently associated with the

Golgi? A possible explanation is that the Golgi apparatus

may not be a conventional organelle in the sense of being

an autonomous entity comprised of stable components.

Rather, it appears to function as a steady-state membrane

structure that undergoes continuous outgrowth from and

reconsumption by the ER through the formation of

anterograde and retrograde transport intermediates.

Hence, when ER export is specifically inhibited, Golgi

membrane components undergoing normal retrograde

transport back to the ER are trapped in the ER or at

ER export domains, and no Golgi structure persists

[12,19–21]. After the Golgi has been dispersed in this

manner, it can readily reform when normal ER export

activities resume [7,22��,23�].

This steady-state view of the Golgi means that Golgi

maintenance and biogenesis are inextricably linked.

Peripheral and integral membrane proteins with roles

in Golgi maintenance will also be involved in Golgi

biogenesis from the ER. Accordingly, one way of making

sense of the vast array of proteins associated with the

Golgi apparatus is to look at their role in the reformation

of the Golgi after it has disassembled. As discussed below,

analyzing the function and activity of proteins associated

with the Golgi in this manner provides a useful frame-

work for understanding Golgi organization and its broader

role in the life cycle of the cell.

Conditions of Golgi disassembly
To understand the Golgi reformation process, it is helpful

to begin with the conditions that cause the Golgi to

disassemble and to see how this affects the distribution

of steady-state Golgi components (see Figure 2a for these

conditions and their effects). The most complete disas-

sembly of the Golgi occurs when the small GTPase

known as Sar1 is unable to bind GTP (e.g. in cells

expressing the persistently inactive mutant Sar1

[T39N]) [12,19,20]. The steady-state Golgi model

explains this effect on the basis of Sar1’s role in the

generation of ER export sites (micron-sized domains of

coated buds and vesicles/tubules that export protein and

lipid out of the ER) (Figure 2b,c). Through its dynamic

GTP binding and release cycle, Sar1 is able to recruit

effector proteins, including COPII coat proteins, to ER

membranes and thereby to differentiate and maintain ER

export domains [12,24,25]. Because Golgi membrane

proteins cycling through the ER travel through these

domains to return to the Golgi, interference with normal

ER export site distribution or behavior will affect the

distribution of the Golgi proteins. Thus, when cells

express the GDP-restricted form of Sar1 (Sar1 [T39N])

and ER export sites disappear, Golgi integral membrane

proteins are trapped in the ER and Golgi peripheral

proteins are retargeted to the ER or cytoplasm

[12,20,21]. The net result is the disappearance of any

Golgi or Golgi-like structure within cells.

Golgi reassembly as a multi-step process
Reversing conditions in which no Golgi or Golgi-like

structures exist within a cell has facilitated the study

of Golgi reassembly. Recently, for example, Puri and

Linstedt [22��] used a reversible ER export block involv-

ing the sequential treatment of cells with BFA and then

H89. Treatment of cells with this protocol mimicked the

effect of Sar1 [T39N] expression, with Golgi proteins

redistributing into either the ER or cytoplasm and no

Golgi template or scaffold remaining. Strikingly, when
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Secretory cargo

Trafficking itineraries of proteins associated with the Golgi apparatus. All proteins that associate with the Golgi do so only transiently before

moving to other destinations in the cell. Integral membrane and luminal proteins enter the Golgi via transport intermediates formed from ER

export sites. Among those are cargo proteins (red) that pass through the Golgi to the cell surface or other cellular destinations and Golgi

resident components (blue)(including Golgi enzymes, cargo receptors and SNAREs specific to the ER-Golgi system) which return to the

ER through retrograde transport intermediates. Cytoplasmic proteins associated with the Golgi (green) (including Arf1 and its effectors, p115

and its binding partners) continuously bind to and dissociate from ER export domains, ERGIC or Golgi membranes.
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the drugs were washed out, the Golgi readily reformed by

outgrowth from the ER.

After washout, different Golgi proteins emerged from the

ER at different rates, with GM130 being faster than

giantin, which was faster than mannosidase II. As this

emergence requires that these proteins be recruited first

to ER export domains, the sequential emergence may

reflect specific roles of these and other proteins in differ-

entiating ER export domains to produce Golgi structures.

In this scenario, localized pools of specific lipid and

protein species produced at ER export domains by

Sar1 activity (e.g. COPII binding and dissociation) would

stimulate peripheral proteins to bind to, and Golgi mem-

brane proteins to sort into, these sites. The ensuing

differentiation of ER export domains would then lead

to recruitment of additional peripheral proteins, causing

Golgi enzymes and secretory cargo proteins within the

ER to undergo sorting into these domains. The domains

would grow larger and inevitably detach from the ER as

globular-tubule elements (i.e. ERGIC: endoplasmic

reticulum–Golgi intermediate carriers). Clustering and

fusion of these elements would then give rise to the

Golgi apparatus.

This multi-step process of Golgi reassembly would

presumably involve differential regulation at each

step. The regulatory machinery involved may intersect

and/or act at multiple steps, but each step would be

dependent on the success of the prior step. For example,

differentiation and functioning of ER export domains

would precede the formation of ERGIC that emerge

from these sites. Recent work in cells expressing the

Sar1 [H79G] mutant, in which Sar1 is able to bind

GTP but cannot efficiently hydrolyze it, supports this

multi-step view [12,20]. In these cells, ER export

domains form in the same way and have a similar overall

ultrastructure as in control cells [12], with COPII coat

proteins localized to these sites. However no Golgi ap-

paratus is observed and protein secretion is inhibited.

This suggests that Sar1 must engage in an ongoing

process of GTP binding and hydrolysis in order to orches-

trate the protein machinery involved in the loading of

cargo into ER export sites and the differentiation of ER

Figure 2
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ER to Golgi transition. (a) Effects of mutations in Sar1 and Arf1, as well as the drugs BFA and H89 on assembly of ER export domains.

(b,c) Ultra-structure of endoplasmic reticulum and Golgi apparatus in COS-7 cells. Note the fenestration of the cis-Golgi in (c) and the

continuity of membranes between the smooth ER and the Golgi in both (b) and (c) within these cells. The dashed red box indicates the complex

organization of an ER export domain.
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export sites into ERGIC (see Figure 2a). Whether

ERGIC formation occurs by fusion of vesicles budding

out from ER exit sites (as is commonly thought) or by

direct maturation of an ER exit site into an ERGIC is

unclear ([18��], see also figure 2b and c), but without Sar1

GTP binding and hydrolysis this process does not occur.

Determining what proteins associate with ER export

domains in Sar1 [H79G]-expressing cells therefore may

provide clues to how these sites become differentiated.

Several types of Golgi proteins are localized to ER export

sites, including p115, so-called ‘matrix proteins’ having

long coiled-coil domains (e.g. GM130 and GRASP65) and

cargo receptors (e.g. KDELR, ERGIC53 and p24 pro-

teins) [12,20,26]. This led to the initial view that they

were persistent elements of the Golgi apparatus unrelated

to the ER [26], but their co-localization with ER export

site markers (including markers for COPII components)

and morphological appearance soon revealed they were

ER export domains [12,20]. Within these export domains,

the Golgi proteins showed dynamic behavior. Photo-

bleaching experiments revealed that GRASP65 (as well

as the COPII protein, Sec13) underwent rapid binding

to and dissociation from the export domains, whereas

ERGIC53 moved continuously in and out of the domains

from surrounding ER membranes [12]. These findings

raise the possibility that Golgi matrix proteins and cargo

receptors have roles in the biogenesis of ER export sites.

Sar1-based biogenesis of ER export domains
and their differentiation by p115 and its
interacting partners
The formation of ER export domains is a complex process

involving Sar1-mediated COPII coat recruitment onto

the ER, coat polymerization into coated buds and the

elaboration of tubular elements [25,27,28]. The clustered,

COPII-coated ER membrane profiles seen in many elec-

tron micrograph images represent only a small part of

an ER export domain, which has a diameter of 0.5–1mm

and significant overall surface area [29] (Figure 2b,c).

Importantly, the COPII-coated budding zones within

ER export domains are not the only places where protein

export into the secretory pathway occurs [18��,30,31].

Recent studies have shown that cargo (such as procolla-

gen) [18��] are exported by a process of tubule outgrowth

from non-coated regions of ER export domains. Given

these characteristics of ER export domains it is likely

that other proteins in addition to Sar1 and its immediate

regulators/effectors (e.g. COPII proteins) are necessary

for the formation and functioning of these sites.

As mentioned before, peripheral Golgi proteins and cargo

receptors localize to ER export sites, both at steady-state

and when Sar1 is in a persistently GTP-bound state; these

proteins could play a role in the formation and/or function

of ER export domains. The best protein candidate for

orchestrating such a role is p115. Comprised of several

protein-binding domains, p115 interacts with a variety of

proteins with known roles in ER-to-Golgi transport,

including other coiled-coil domain proteins (i.e.

GM130, giantin and GRASP65), SNARE proteins (i.e.

syntaxin 5, Bet1 protein and Sly1 protein), Rab1 GTPase

and GBF1 (the exchange factor for Arf1 GTPase)

[32–36,37��,38,39�]. Once recruited to membranes at

ER export sites, p115 could initiate a cascade of regula-

tory interactions among these proteins that would lead to

Golgi biogenesis and maintenance. The interaction of

p115 with SNARE proteins, for example, may allow

membranes budding out from ER export domains to fuse

homotypically [39�], while its interactions with GM130

and giantin could drive tethering interactions between

membranes and the cytoskeleton [40,41]. Interactions of

p115 with GRASPs, on the other hand, may facilitate

sorting of p24 cargo receptors into forward-directed trans-

port intermediates [38], while its interaction with GBF1

could modulate Arf1 [37��], whose GTPase activity

underlies the recruitment of dozens of proteins to mem-

branes [3,5��,42]. Because p115 is thought to be recruited

to membranes by Rab1 and/or Rab2 [43–45], which

localize not only to ER export domains but also to ERGIC

and Golgi membranes [36,46], p115 and its interacting

partners could act to differentiate membranes at multiple

stages during the process of Golgi biogenesis.

Evidence suggesting that p115 and its interacting part-

ners are important for the functioning of ER export

domains has come from studies examining the effects

of down-regulating and/or perturbing the activity of these

proteins. Down-regulation of p115, GM130 (at high tem-

peratures) or molecules associated with p115 or GM130

(including rab1b, rab2a and golgin 84) blocks all secretory

trafficking to the Golgi [39�,47–51]. Moreover, a pheno-

type emerges that is similar to what is observed when Sar1

is persistently active: Golgi enzymes are redistributed

into the ER, and p115 and matrix and/or cargo receptor

proteins are located at ER export domains. Thus, unless

p115 and its interacting partners are fully active, ER

export domains (initiated by Sar1 activity) cannot give

rise to ERGICs that translocate through the cytoplasm

and fuse with each other to form Golgi elements.

Building a Golgi apparatus: role of Arf1
GTPase
What molecules, or sets of molecules, might be recruited

by p115 and its interacting partners to drive Golgi bio-

genesis? To address this question, it is useful to examine

the molecules that are not recruited to ER export domains

when the Golgi is absent, such as in Sar1 [H79G]-expres-

sing cells or in cells where p115 or rab proteins are down-

regulated. These molecules include the small GTPase

called Arf1, Arf1’s effectors (including COPI, clathrin,

ankyrin, spectrin and others), Golgi enzymes, and secre-

tory cargo proteins [12,20,32,39�,52].
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Of this list, Arf1 is the most likely candidate for coordi-

nating the machinery required for globular-tubule trans-

port intermediate (i.e. ERGIC) outgrowth from ER

export sites, and for their clustering and fusion to generate

Golgi elements. Like Sar1, Arf1 is a GTPase that

exchanges its GDP for GTP. In its GTP-bound state,

Arf1 is active and associates with membranes. Upon

hydrolysis of its GTP to GDP, Arf1 becomes inactive

and dissociates from membranes. In its active, mem-

brane-bound form, Arf1 recruits dozens of other cytosolic

proteins to ERGIC and Golgi membranes [3,4,5��,42].

Included among these are the following: COPI coat

proteins, which bind to and cluster cargo receptor proteins

[2,16,53,54]; lipid-modifying enzymes, such as phospho-

tidylinositol kinases and phospholipases [55,56], which

create a lipid environment distinct from ER membranes;

and ankyrin and spectrin proteins that form a scaffold

onto which many cytoskeletal and signaling molecules

adhere [3]. The cytoskeletal proteins recruited onto

Golgi membranes by the ankyrin/spectrin meshwork

include actin, tubulin, vimentin, dynein, dynamin and

myosin isoforms [57–61]. Among these, the dynein/dyna-

min complex is thought to mediate the microtubule-

dependent clustering of ERGIC [16,62], while myosin

VI may stabilize Golgi membranes in the centrosomal

region or help to mediate post-Golgi budding events [60].

Together, this group of Arf1-dependent proteins and

their interacting partners could carry out the following

functions: first, to further differentiate the lipid environ-

ment of ER export sites so Golgi enzymes and cargo can

sort into these sites; second, to facilitate detachment of

globular-tubule clusters (i.e. ERGIC) from the now cargo-

laden regions of ER export sites; third, to mediate the

clustering and fusion of these structures; and fourth, to

stimulate retrieval of specific membrane components back

to the ER through retrograde transport. The later process

would be essential for organizing carbohydrate-processing

enzymes, nucleotide–sugar transporters and proton pumps

within the Golgi so that they could behave as an inter-

acting system for rapid and efficient conversion of glyco-

protein and glycolipid substrates into their products.

Evidence that supports Arf1 having a critical role in these

processes comes from the finding that when the GTPase

activity of Arf1 is inhibited, for example in cells expressing

the persistently inactive form of Arf1, Arf1 [T31N], or in

cells treated with BFA (which prevents Arf1 from binding

to membranes), none of these processes occurs. Yet ER

exit domains are present, together with dynamically local-

ized COPII proteins, p115, matrix proteins and cargo

receptors [12,22��,63,64��] (as diagrammed in Figure 2a).

Recruitment of Arf1 to membranes is mediated by the

guanosine exchange factor GBF1, which itself undergoes

dynamic binding and dissociation from membranes

(Jackson and Lippincott-Schwartz, unpublished).

Recently, Sztul and colleagues showed that p115 interacts

with GBF1 [37��]. Thus, p115 might regulate GBF1’s

association with membranes and thereby indirectly con-

trol Arf1’s membrane recruitment. This is consistent with

the finding that during treatment of cells with BFA, which

is thought to inactivate GBF, p115 continues to associate

with membranes [37��]. In BFA-treated cells, p115 and

Sar1 activities would allow ER export sites to form, but

due to the inhibition of Arf1 the ER export sites would

not give rise to cargo-enriched ERGIC (which would be

capable of merging to form a Golgi).

The unique protein and lipid environment of the Golgi,

maintained by Arf1’s activity, is known to serve as a

platform for signaling and regulating molecules with

diverse functions. These include heterotrimeric G pro-

teins, small G protein Ras, PKA, PI(3) kinase, IQGAP,

eNOS, Nir2, PI4Kb and Cdc42 (see Box 1). Other cyto-

plasmic proteins associated with the Golgi have roles in

the nucleus and cytoplasm, including casein kinase,

cyclin B2, tankyrase and Cullin family members and

CtBP/BARS. Still other Golgi-associated proteins are

kinases and activators of kinases; these include PKC,

Myt1, and calmodulin kinases. Finally, a number of

polo-like kinases, previously thought to be located on

centrosomes, reside on the Golgi including Plk-3 and

Sak1 [5��,65]. These proteins have roles in regulating

microtubule dynamics.

Many of the activities of these signaling and regulatory

molecules depend on the membrane environment of the

Box 1 Golgi-associated signaling and regulatory molecules

Heterotrimeric G proteins [4] Cytoskeletal regulatory
proteins [3,4,57]

G(i3), Ga, G bg Dynein, dynamin

Myosin I, II, V, VI

Small G proteins
[4,36,42,43,53,73,75�]

Ankyrin isoforms

Arf1, Arf3 Spectrin isoforms

Arl family members Kinesins

Ras, Rac, Cdc42 IQGAP, WASP/Arp2/3

Rab family members

Phospholipases [3,5��,55,56]
Protein kinases

[3,5��,55,71,76,78,79]
Phospholipase A2

Phosphotidyl-inositol kinases Phospholipase D2

PKA

PKC isoforms Others [3,4,5��,77�,80]
Casein kinase isoforms Cullin2, Cullin3

Calmodulin kinase Endothelial nitric-oxide

synthase (eNOS)

Protein Kinase D Phosphotidylinositol

transfer protein, Nir2

Myt1 kinase Phosphatidylinositol

phospholipid phosphatase,
Polo-like kinases, Plk- 3, Sak1 PTEN2

MEK kinases, MEKK2, MEKK4 Tankyrase1, Tankyrase 2

Mammalian Ste20 kinases,

YSK1 and MST4

CtBP/BARS
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Golgi created specifically by Arf1 and its effectors. As an

example, they undergo rapid dissociation from Golgi

membranes when Arf1 is acutely inactivated with BFA

[3,5��]. Interestingly, Arf1 is inactivated early in mitosis

[5��]. The ensuing release of these signaling and reg-

ulatory proteins into the cytoplasm could potentially

therefore have roles in orchestrating mitotic processes

occurring in the cytoplasm. Consistent with this, when

mitotic Golgi disassembly is inhibited by treatments that

prevent Arf1 from becoming inactive, the Arf1-

dependent Golgi peripheral proteins do not release from

the Golgi and mitotic defects in chromosome segregation

and furrow ingression during cytokinesis arise [5��]. This

suggests that Arf1-dependent dispersal of peripheral

Golgi proteins in mitosis is important for coordinating

the behavior of Golgi membranes, chromosomes and the

cytoskeleton during mitosis. The inactivation of Arf1 in

mitosis thus provides a means for redistributing these

proteins into the cytoplasm so that they can perform their

mitotic functions.

Golgi formation through sequential activity
of Sar1 and Arf1
The multi-step process of Golgi biogenesis described

here thus appears to be orchestrated in sequence by

the GTPase activities of Sar1 and Arf1 and their effectors

(Figure 3). In this scheme, Sar1 GTPase activity initiates

the process of Golgi biogenesis by COPII-mediated

sorting of specific integral membrane proteins (e.g.

ERGIC53, p24 proteins and KDEL receptor) to ER

sub-domains. Clustering of these proteins results in

changes in bilayer thickness and composition at these

sites, leading to the recruitment and activation of mole-

cules like Rab1, which in turn recruits p115 to these sites.

The ability of P115 to interact with SNAREs and matrix

proteins then causes the nascent ER export sites to

differentiate into ERGIC (i.e. immature Golgi) by sti-

mulating membrane transformation and fusion events

in this local region. (Once the Golgi is formed, Rab1-

and Rab2-mediated recruitment of p115 and its partners

continues to stimulate membrane transformation, tether-

ing and fusion events in Golgi membranes.)

The activity of Arf1 at ER export domains is what allows

these domains to transform into dynamic transport inter-

mediates capable of packaging diverse types of secretory

cargo, sorting selected molecules back to the ER and

translocating through the cytoplasm. When fused

together, these intermediates comprise the Golgi. Arf1

activation may be a result of the recruitment of GBF1 by

Figure 3

Sar1-GDP

Sar1-GTP

COPII

Rab1

P115
 

GBF1

Arf1-GTP

Ankyrin/spectrin Phospholipid modifiers

COPI
Kinases

Kinases

Sar1[T39N]

GRASP65

Golgin-84

Giantin

SNAREs GM130

Current Opinion in Cell Biology
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(ERGIC53, p24 proteins)
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Schematic organization of Golgi biogenesis. (a) Recruitment of proteins involved in the biogenesis of the Golgi as a steady-state system is

based on the sequential GTPase activities of Sar1 and Arf1. Note that different sets of interacting protein pathways associate with different

compartments :ER (black box), ER export domain (red box), ERGIC and Golgi membranes (blue box).
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p115, as GBF1 is the likely guanosine exchange factor for

Arf1 [37��,64��]. Once Arf1 is active on the ER export site

membranes, it recruits a large number of effector proteins

(including ankyrin, spectrin, COPI, signaling proteins

and phospholipid-modifying proteins) that allow the

ER export domain to transform first into ERGIC and

then into Golgi membranes.

This process involves a functional as well as a morphol-

ogical transformation of membranes since the structures

comprising ER export sites and ERGIC (i.e. clusters of

tubules and vesicles) are different in appearance from

those comprising the Golgi (i.e. compact flattened stacks

of cisternae). Determining what Golgi-associated proteins

are responsible for converting Golgi membranes into

flattened stacks of cisternae and how this is mediated

is an active area of investigation [66,67]. An important

clue comes from recent work observing the behavior of

ER membranes. These membranes are capable of dra-

matically remodeling from a reticular network into a tight

stack of cisternae (reminiscent of the Golgi and other

stacked organelles) upon overexpression of ER proteins

with cytoplasmic domains capable of undergoing low

affinity interactions [68�]. A similar mechanism, therefore,

might explain how the Golgi obtains its specific morphol-

ogical shape.

While the focus of this review has been the mechanisms

underlying Golgi biogenesis in interphase, Arf1 and Sar1

have been shown to be sequentially inactivated and then

re-activated during mitosis [5��,69]. This raises the pos-

sibility that the activities of these GTPases are relevant to

the multi-step process of mitotic Golgi reassembly [5��].
Further research is needed to address this possibility

given the complexity and varying viewpoints of mitotic

Golgi breakdown and reassembly [5��,70–72].

Conclusions
The Golgi apparatus is a steady-state organelle that can

be assembled from the ER de novo in the absence of any

pre-existing structure. This de novo assembly depends on

the sequential activities of Sar1 and Arf1. Sar1 activity

leads to the initial recruitment of numerous peripheral

proteins to ER export domains (including Rab1, p115,

SNAREs and matrix proteins) that permit these domains

to differentiate into ERGIC. These structures are then

further differentiated by the activity of Arf1 and its

numerous effectors, producing Golgi membranes

(enriched in secretory cargo and processing enzymes)

that are morphologically and geographically distinct from

ER. Of the many Golgi-associated proteins whose func-

tions remain to be unraveled, several are likely to be

involved in modulating the activities of Sar1, Arf1 and its

effectors. Others may not be involved in Golgi biogenesis

or maintenance at all, but function as a consequence of

the Golgi’s steady-state structure. These include the

following: glycosylating enzymes; molecules with roles

in exporting cargo out of the Golgi to the plasma mem-

brane or endosomal system (e.g. Arl family [73]); proteins

that integrate Golgi structure with the cytoskeleton (e.g.

COGs [74]); and molecules that use Golgi membranes

as a platform for regulating signaling events [55,75�,76].

A challenge for the future is to understand how all of the

Golgi-associated proteins interact with each other to

maintain the Golgi’s complex structure and diverse

cellular functions.
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